翻訳と辞書
Words near each other
・ Hester Prynne
・ Hester Sainsbury
・ Hester Santlow
・ Hester Site
・ Hester Store
・ Hester Street
・ Hester Street (film)
・ Hesseln station
・ Hesselø
・ Hessen (Osterwieck)
・ Hessen (ship)
・ Hessen Cassel, Indiana
・ Hessen-Pokal
・ Hessenberg
・ Hessenberg matrix
Hessenberg variety
・ Hessendorf
・ Hesseneck
・ Hessenford
・ Hesseng
・ Hessengau
・ Hessenheim
・ Hessenlager
・ Hessenlied
・ Hessenliga
・ Hessenpark
・ Hessenstein
・ Hessenstein Castle
・ Hessentag
・ Hesseplaats (Rotterdam Metro)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Hessenberg variety : ウィキペディア英語版
Hessenberg variety
In geometry, Hessenberg varieties, first studied by De Mari, Procesi, and Shayman, are a family of subvarieties of the full flag variety which are defined by a Hessenberg function ''h'' and a linear transformation ''X''. The study of Hessenberg varieties was first motivated by questions in numerical analysis in relation to algorithms for computing eigenvalues and eigenspaces of the linear operator ''X''. Later work by Springer, Peterson, Kostant, among others, found connections with combinatorics, representation theory and cohomology.
== Definitions ==
A ''Hessenberg function'' is a function of tuples
:h :\ \rightarrow \
where
: h(i+1) \geq \text(i,h(i)) \text 1 \leq i \leq n-1.
For example,
: h(1,2,3,4,5)=(2,3,3,4,5) \,
is a Hessenberg function.
For any Hessenberg function ''h'' and a linear transformation
: X: \C^n \rightarrow \C^n, \,
the ''Hessenberg variety'' is the set of all flags F_ such that
: X \cdot F_i \subseteq F_
for all i. Here F_ denotes the vector space spanned by the first h(i) vectors in the flag F_ .

: \mathcal(X,h) = \ \subset F_ \text 1 \leq i \leq n \}

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Hessenberg variety」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.